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Within the scope of the self-consistent-field (SCF) and mean-SCF approxima-

tions, the Matsubara–Kanzaki–Krivoglaz lattice-statics method as well as the

Krivoglaz–Clapp–Moss approach, the kinematic diffuse scattering intensities

near the Bragg reflection caused by the atomic short-range order (taking into

account the long-range magnetic order) in a (para)magnetic bulk face-centred

cubic Ni–Fe alloy are investigated in detail. The reciprocal-space symmetry

analysis of both the ‘direct’ ‘electrochemical’ and short-range ‘exchange’

interactions as well as the long-range ‘indirect’ ‘strain-induced’ contribution to

the Fourier components of interatomic ‘mixing’ energies and the diffuse

scattering intensity contributions near the ‘fundamental’ �(000)-point is carried

out. In the �-point vicinity, the rigorous symmetry regularities for all the energy

and diffuse scattering intensity contributions are formulated. As revealed, the

short-range order (SRO) diffuse scattering intensity behaves conditionally as

ISROðkÞ / k2 for k! 0 from all the reciprocal-space directions, which is in

contrast to the conventional Huang diffuse scattering intensity conditionally

definable as IHuangðkÞ / k�2 for k! 0. Special attention is paid to the analytic

(i.e. azimuthal) and nonanalytic (i.e. first-kind-jump-discontinuous ‘radial’)

behaviours of the Fourier components of interatomic ‘mixing’ energies or the

SRO intensities near and at the �(000)-point.

1. Introduction

Nowadays, the advanced microelectronics components in

information (Waser et al., 2009; Siegrist et al., 2011) and

energy-storage (Aricò et al., 2005) technologies as well as

contemporary physical metallurgy (Cahn & Haasen, 1996) are

based on a wide use of imperfect crystals. On the other hand,

because of significant miniaturization of working elements,

scientific and technological efforts have been directed to the

development of ‘condensed matter point defects’ engineering.

Usually, point defects are referred to as interacting or non-

interacting substitutional and interstitial impurity atoms or

their structural vacancies. Thus, depending on the concentra-

tion and configurational (ordered or disordered) states of

point defects, thermodynamically controlled by ambient

conditions such as temperature, pressure and electromagnetic

fields, a variety of physical properties can be achieved (Cahn

& Haasen, 1996; Aricò et al., 2005; Waser et al., 2009; Siegrist et

al., 2011). The circumstances become even more fascinating

when the point defects’ magnetic moments’ degrees of

freedom are considered. As a result, by changing both an

atomic order and a magnetic one, one can expand the set of

desirable properties and new phenomena in condensed

matter. Therefore, information on the spatial atomic and

magnetic moment configurations in condensed media is criti-

cally important for the cutting-edge design of new materials as

well as for a deeper understanding of existing materials, and

also is of great fundamental interest in researching the basics

of interatomic interactions.

To date, one of the powerful experimental probes for

investigation of point-defect interactions is the method of

diffuse scattering of radiation (X-rays or thermal neutrons)

(Krivoglaz, 1996; Billinge & Thorpe, 1998; Barabash et al.,

2009) from atomically short-range ordered (SRO) solids. As a

result, depending on the interatomic interaction types (‘elec-

trochemical’, magnetic or ‘strain-induced’ ones) and their

typical action at a distance, one can experimentally observe

the several principal differences in the diffuse scattering

patterns. In the event of a pure ‘elastic’ (‘strain-induced’, i.e.

owing to the atomic size mismatch) interaction between point
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defects, the coherent Bragg reflection [at the �(000)-point,

k� � 0] is broadened in accordance with the classical Huang

diffuse scattering (Huang, 1947) conditionally definable as

IHuang / k�2 for any quasi-wavevector k! 0. So, by

measuring the Huang scattering in materials with different

[face-centred cubic (f.c.c.), body-centred cubic (b.c.c.) or

hexagonal close-packed (h.c.p.)] host crystal lattices and

various (metallic, ionic, covalent etc.) host crystal binding, it

becomes possible to estimate the static lattice distortions, the

critical action radius for randomly distributed and elastically

interacting impurities, their clusters etc. (Dederichs, 1971,

1973; Trinkaus, 1972; Larson & Schmatz, 1974; Larson, 1975;

Peisl, 1975; Charnyi et al., 1991; Charniy et al., 1992; Miche-

litsch & Wunderlin, 1996; Barabash et al., 1999; Moreno et al.,

2003; Campbell, 2010). However, the general picture changes

significantly when one considers the strongly ‘electro-

chemically’ interacting impurities in a host crystal. In this case,

the disordered system undergoes atomic ordering or clustering

(Krivoglaz, 1996) and hence above the order–disorder phase-

transformation temperature, TK (Kurnakov point), a variety

of maxima of the diffuse scattering intensity, ISROðkÞ, caused

by the atomic SRO are observed (Schönfeld, 1999; Ice &

Sparks, 1999). Note that, in the case of an atomic ordering

tendency, the SRO intensity maxima are usually located at the

high-symmetry points of the first Brillouin zone (1st BZ) with

the superstructural wavevectors ks 6¼ 0 (Schönfeld, 1999).

Often, but not always, these points are the superstructural

reflection positions on the diffraction patterns in the atom-

ically long-range ordered (LRO) state. While the diffuse

intensity distribution, ISROðksÞ, is a precursor of the disorder–

order reaction, the intensity at the Bragg reflection position,

ISROð0Þ, is controlled by the microscopic atomic diffusion

processes during the atomic SRO relaxation and determined

by the ground-state energy of the nonideal solid solution itself

(Krivoglaz, 1996). A systematic analysis of ISROðkÞ near and at

the k�-point, which takes into account the atomic and

magnetic spatial orders, including the atomic size mismatch

effects, is still absent in the condensed matter physics litera-

ture.

In this work, we report the classical-models-based investi-

gation of the diffuse scattering intensities distributed near the

Bragg reflection in a complex system governed by both ‘direct’

short-range and ‘indirect’ long-range interactions between

point defects. We consider a (para)magnetic f.c.c. Ni3Fe-

type permalloy with atomic SRO only. This classical alloy is

chosen because the concentration-dependent Curie tempera-

tures of its magnetic phase transition, TC, are higher than the

Kurnakov points, TK (Béranger et al., 1996). Thus, while at

absolute temperatures T>TC an alloy is paramagnetic with

atomic SRO only, in the temperature interval ðTK;TCÞ it is

already macroscopically ferromagnetic with atomic SRO too.

2. Theory

The interrelation between the SRO diffuse scattering inten-

sities and the total ‘mixing’ energy Fourier components has

been proposed by Krivoglaz independently of Clapp and Moss

within the scope of the self-consistent-field (SCF) fluctuation

wave method (Krivoglaz, 1957; Clapp & Moss, 1966, 1968;

Moss & Clapp, 1968). Nowadays, this expression is widely

known as the KCM formula. For a binary substitutional alloy,

e.g. f.c.c. Ni1�cFec, it is

ISROðkÞ / ~��ðkÞ ffi
D

1þ cð1� cÞ ~wwtotðkÞ=ðkBTÞ
; ð1Þ

where ~��ðkÞ is the equilibrium SRO parameter Fourier

component [evaluated from the diffuse scattering intensity,

ISROðkÞ, in dimensionless Laue units (L. u.) (Schönfeld, 1999)];

c is the relative concentration of an alloying component (Fe);

kB is the Boltzmann constant; T is the temperature; D is the

normalization factor defined as (Krivoglaz, 1957; Khacha-

turyan, 1974)

D ffi
1

�

Z
k21st BZ

dk ~��ðkÞ

24 35 1

Nu:c:

X
k21st BZ

1

1þ cð1� cÞ ~wwtotðkÞ=ðkBTÞ

" #�1

¼
1

Nu:c:

X
k21st BZ

1

1þ cð1� cÞ ~wwtotðkÞ=ðkBTÞ

" #�1

¼ �

Z
k21st BZ

dk

1þ cð1� cÞ ~wwtotðkÞ=ðkBTÞ

24 35�1

ffi 1: ð2Þ

In equation (2), the integration is made over the 1st BZ

volume � (containing Nu:c: k-points, where Nu:c: is the total

number of unit cells). [Fig. 1 illustrates the direct-lattice

conditional cubic and primitive unit cells (as well as the reci-

procal-space 1st BZ) for f.c.c. Ni–Fe alloys with atomic SRO

only.] Note that equation (2) is valid with a high accuracy for

many close-packed alloys (Khachaturyan, 1974).

research papers

476 Sergiy M. Bokoch et al. � Ni3Fe-type permalloy Acta Cryst. (2013). A69, 475–482

Figure 1
(a) An f.c.c. lattice and its primitive unit cell (blue solid lines) defined by
the primitive fundamental translation vectors fa1; a2; a3g; (b) the 1st BZ
of f.c.c. lattice reciprocal space; here, fb1; b2; b3g are the reciprocal-lattice
translation vectors, and the triple of f2�a�1 ; 2�a�2 ; 2�a�3g composes the
quasi-wavevector ‘star’ corresponding to the central X(001) point of the
1st BZ square lateral faces and generates an atomic ordering. In (a), PMS
and FMS denote the paramagnetic and ferromagnetic states of f.c.c. Ni–
Fe alloys with atomic SRO only, respectively. In (b), �, X;W;L, KðUÞ
and 4, Z;Q, �, �, C;O, B0 are the high-symmetry points and the high-
symmetry directions, respectively, within the irreducible part (delineated
with red solid lines) of the 1st BZ.



As shown within the scope of the mean self-consistent-

field (MSCF) approximation (Tatarenko & Radchenko, 2003;

Bokoch & Tatarenko, 2008, 2010; Tatarenko et al., 2008), the

total ‘mixing’ energy Fourier component, ~wwtotðkÞ, with any

quasi-wavevector k for f.c.c. Ni–Fe-type alloys can be

presented as

ewwtotðkÞ ¼ ewwprmðkÞ þewwmagðkÞ

’ e’’chemðkÞ þeVV��
si ðkÞ þewwmagðkÞ

ffi e’’chemðkÞ þeVV��
si ðkÞ þeJJNiNiðkÞs

2
Ni�

2
Ni

þeJJFeFeðkÞs
2
Fe�

2
Fe � 2eJJNiFeðkÞsNisFe�Ni�Fe: ð3Þ

In equation (3), e’’chemðkÞ, eVV��
si ðkÞ, ewwprmðkÞ and ewwmagðkÞ are the

‘electrochemical’, ‘strain-induced’, ‘paramagnetic’ [in fact,e’’chemðkÞ þeVV��
si ðkÞ] and magnetic ‘mixing’ energy Fourier

component contributions, respectively (Tatarenko & Rad-

chenko, 2003; Bokoch & Tatarenko, 2008, 2010; Tatarenko et

al., 2008);eJJ��0 ðkÞ is an ‘exchange integral’ Fourier component

as a parameter of the magnetic �–�0 interaction (�; �0 = Ni,

Fe). To determine the relative spontaneous magnetizations,

�Ni and �Fe, of both Ni and Fe subsystems with any allowable

atomic spin numbers, sNi and sFe, let us consider the statistical

thermodynamics model of a (para)magnetic f.c.c. permalloy

with atomic SRO only. Thus, we are looking for the total

configuration-dependent part of free energy in the form

Ftot
conf ¼ Uat

conf þ U
mag
conf � T½Sat

conf þ
P

� S
magð�Þ
conf �, where Uconf and

Sconf are the configurational parts of the internal energies and

entropies of both atomic (at) and magnetic (mag) interacting

subsystems (i.e. � = Ni, Fe), respectively. Within the scope of

both the atomic subsystem SCF and magnetic subsystem

MSCF approximations according to Tatarenko & Radchenko

(2003), Bokoch & Tatarenko (2008, 2010) and Tatarenko et al.

(2008), one can obtain these configurational terms for a

(para)magnetic f.c.c. Ni–Fe alloy with atomic SRO only in the

simplest form as

Uat
conf ’ �U0prmðcÞ þ

Nu:c:

2
ewwprmð0Þc

2; ð4Þ

U
mag
conf ffi

Nu:c:

2

heJJNiNið0Þð1� cÞ
2�2

Nis
2
Ni þ

eJJFeFeð0Þc
2�2

Fes2
Fe

þ 2eJJFeNið0Þcð1� cÞ�Fe�NisFesNi

i
; ð5Þ

Sat
conf ffi �Nu:c:kB c ln cþ ð1� cÞ lnð1� cÞ½ �; ð6Þ

S
magð�Þ
conf ffi Nu:c:kBc�

�
ln sinh

�
1þ

1

2s�

� �
��

�
� ln sinh

1

2s�
��

� �
� ��Bs�

ð��Þ

�
: ð7Þ

In equation (7), cNi ¼ 1� c, cFe ¼ c and Bs�
ð��Þ is the classical

Brillouin function (Aharoni, 2000) defined as

Bs�
ð��Þ ¼

�
1þ

1

2s�

�
coth

�
1þ

1

2s�

� �
��

�
�

1

2s�
coth

1

2s�
��

� �
; ð8Þ

here �� � s�H
�
mol=ðkBTÞ is a characteristic magnetic-

interaction-to-thermal-fluctuation energy ratio and H
�
mol ffi

�g��B

P
�0 ���0��0 is the Weiss’s intracrystalline ‘molecular’-

field (i.e. MSCF) value with coefficients f���0 g; g� is the Landé

factor (as assumed for transition metals, gFe ffi gNi ffi g ¼ 2);

�B is the Bohr magneton; �U0prm is a configuration-inde-

pendent part of an internal energy, which is a linear function of

c; Nu:c: is the total number of f.c.c. lattice sites or primitive unit

cells. Equation (7) can be obtained by the steepest-descent

method (see references in Tatarenko & Radchenko, 2003;

Bokoch & Tatarenko, 2008, 2010; Tatarenko et al., 2008) and is

valid for non-interacting magnetic moments with any non-

negative integer or half-integer local spin numbers, s�.

By combining equations (4)–(7), one can obtain the total

configuration-dependent part of free energy for a magnetic

f.c.c. Ni–Fe alloy with atomic SRO only in the form

F tot
conf

Nu:c:

ffi
4U0prmðcÞ

Nu:c:

þ
1

2

�ewwprmð0Þc
2 þeJJNiNið0Þs

2
Nið1� cÞ2�2

Ni

þ 2eJJNiFeð0ÞsNisFeð1� cÞc�Ni�Fe þ
eJJFeFeð0Þs

2
Fec2�2

Fe

�
þ kBT½c ln cþ ð1� cÞ lnð1� cÞ�

� kBTð1� cÞ

�
ln sinh 1þ

1

2sNi

� �
�Nið�Ni; �FeÞ

� �
� ln sinh

1

2sNi

�Nið�Ni; �FeÞ

� �
� �Nið�Ni; �FeÞBsNi

½�Nið�Ni; �FeÞ�

�
� kBTc

�
ln sinh 1þ

1

2sFe

� �
�Feð�Fe; �NiÞ

� �
� ln sinh

1

2sFe

�Feð�Fe; �NiÞ

� �
� �Feð�Fe; �NiÞBsFe

½�Feð�Fe; �NiÞ�

�
: ð9Þ

For the paramagnetic state (PMS) domain, equation (9)

transforms obviously into its conventional SCF-approximation

form (Khachaturyan, 1974; Krivoglaz, 1996):

F tot
conf=Nu:c: ffi �U0prmðcÞ=Nu:c: þewwprmð0Þc

2=2

þ kBT ½c ln cþ ð1� cÞ lnð1� cÞ�:

Using equation (9) and the minima conditions, @F tot
conf=

@�Ni � 0 and F tot
conf=@�Fe � 0, we can find the equilibrium

values of �NiðTÞ and �FeðTÞ as solutions of the following

equations:
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�Ni ffi BsNi

�
�

1

ð1� cÞkBT

�eJJNiNið0Þs
2
Nið1� cÞ

2�Ni

þeJJNiFeð0ÞsNisFeð1� cÞc�Fe

	�
; ð10aÞ

�Fe ffi BsFe

�
�

1

ckBT

�eJJFeFeð0Þs
2
Fec2�Fe

þeJJNiFeð0ÞsNisFeð1� cÞc�Ni

	�
: ð10bÞ

3. Results and discussion

To estimate all the ‘mixing’ energy Fourier component

contributions entering into equation (3), let us first evaluate

the ‘exchange integrals’ of magnetic interactions, namely,

f~JJ��0 ð0Þg. For this goal, we use the MSCF approximation

(Tatarenko & Radchenko, 2003; Bokoch & Tatarenko, 2008,

2010; Tatarenko et al., 2008) for the Curie temperature–

concentration dependence in the form

TCðcÞ ffi �


ð1þ sNiÞsNi

eJJNiNið0Þð1� cÞ þ ð1þ sFeÞsFe

�eJJFeFeð0Þc� f½ð1þ sNiÞsNi
eJJNiNið0Þð1� cÞ

� ð1þ sFeÞsFe
eJJFeFeð0Þc�

2
þ 4ð1þ sNiÞsNi

� ð1þ sFeÞsFe
eJJ2

NiFeð0Þð1� cÞcg1=2
�
=ð6kBÞ: ð11Þ

Fitting the experimental data on TCðcÞ by equation (11)

(Bokoch & Tatarenko, 2008) with sNi ¼ 1=2 and sFe ¼ 3=2,

we get eJJNiNið0Þ ffi �215:9 meV, eJJNiFeð0Þ ffi �231:5 meV andeJJFeFeð0Þ ffi þ54:9 meV. Taking into account eJJ��0 ð0Þ ffi
12J��0 ðr1Þ, we estimate respective ‘exchange integrals’ for the

first nearest-neighbour coordination shell with a radius

r1 ¼ a0=21=2 (Fig. 1a) as follows: JNiNiðr1Þ ffi �17:99 meV,

JNiFeðr1Þ ffi �19:29 meV and JFeFeðr1Þ ffi þ4:58 meV. Such

‘exchange integrals’ for Ni–Ni and Ni–Fe atomic pairs corre-

spond to the ferromagnetic interactions, and for Fe–Fe pairs to

the antiferromagnetic interaction. This result is in overall

agreement with many experimental and theoretical data for

f.c.c. Ni1�cFec alloys obtained over years1 as well as with the

conception of �-Fe itself. So, using the values of eJJ��0 ð0Þ and

equations (10a), (10b), and (3), we can calculate the magnetic

‘mixing’ energy Fourier components, ewwmagðkÞ, for all quasi-

wavevectors k near and at the k�-point. In spite of ‘exchange’

interaction differences for various atomic pairs, the resulting

‘mixing’ energy parameter, ewwmagðkÞ, at each T 2 ðTK;TCÞ

corresponds to the macroscopically ferromagnetic state. It is

also evident that, due to the significant T-dependence of

�NiðTÞ and �FeðTÞ [equations (10a), (10b)] at a certain

concentration c, the magnetic ‘mixing’ energy Fourier

components will also be strong T-dependent functions,ewwmagðk;TÞ, which leads to pronounced dependences of

ewwtotðk;TÞ [equation (3)] (Bokoch & Tatarenko, 2010). More-

over, in view of the short-range and almost isotropic character

of spin-orientation-averaged magnetic interactions, one can

assume the following magnetic ‘mixing’ energy properties for

f.c.c. Ni1�cFec in a reciprocal-space representation:ewwmagðkÞjk!0 � ewwmagð0Þ> 0.

Let us now briefly consider the ‘strain-induced’ ‘mixing’

energy contribution, eVV��
si ðkÞ, in equation (3). The relevant

semi-phenomenological theory (Khachaturyan, 1974; Bugaev

& Tatarenko, 1989) is based on the Matsubara–Kanzaki–

Krivoglaz lattice-statics method (Matsubara, 1952; Kanzaki,

1957; Krivoglaz, 1958). Within the scope of the superposition

(Khachaturyan, 1974) and quasi-harmonic (Khachaturyan,

1974; Bugaev & Tatarenko, 1989) approximations, the gauged

‘strain-induced’ interaction energy Fourier components for

each k 6¼ 0 and k ¼ 0 are defined aseVV��
si ðkÞ ’ �

P
i;j¼x;y;z

eFFi� ðkÞeGGijðkÞeFFjðkÞ

þ N�1
u:c:

P
k0 6¼0

P
i;j¼x;y;z

eFFi� ðk0ÞeGGijðk0ÞeFFjðk0Þ; ð12Þ

eVV��
si ð0Þ ’ �3	ðC11 þ 2C12ÞðL

�
Þ

2

þ N�1
u:c:

P
k0 6¼0

P
i;j¼x;y;z

eFFi� ðk0ÞeGGijðk0ÞeFFjðk0Þ: ð13Þ

In equations (12) and (13), eFFðkÞ is the Fourier-transform

vector of the so-called Kanzaki fictive ‘coupling’ forces acting

from dissolved � atoms onto the host crystal atoms;eGGðkÞ ¼ ½eAAðkÞ��1 (k 6¼ 0), where eAAðkÞ is the Fourier transform

of the dynamic matrix of a host crystal;1 i; j ¼ x; y; z are the

Cartesian indices; 	 ¼ a3
0=4 is the volume of a primitive unit

cell with a lattice parameter a0 (Fig. 1a); C11, C12 and C44 are

moduli of elasticity for cubic crystals; L� ¼ f@ ln a0=@c�gjc�¼0 is

the concentration coefficient of a host crystal lattice dilation

(for f.c.c. �-Ni alloyed with Fe or f.c.c. �-Fe alloyed with Ni).1

As shown (Bokoch & Tatarenko, 2010; Oliinyk et al., 2011),

the long-range ‘strain-induced’ interaction energy Fourier

components, eVV��
si ðkÞ, along various high-symmetry directions

in the 1st BZ from its surface high-symmetry points to the

central �(000)-point (Fig. 1b) behave in different ways [and

the discontinuities of the first kind of the eVV��
si ðkÞ function take

place at the k�-point: lim k!0
eVV��

si ðkÞ 6¼ eVV��
si ð0Þ]. Namely, the

gauged ‘strain-induced’ ‘mixing’ energy symmetry regularities

are satisfied (Bokoch & Tatarenko, 2010; Oliinyk et al., 2011)

in a reciprocal-space representation aseVV��
si ð0Þ<eVV��

si ðk#"kX
! 0Þ<eVV��

si ðk#"kW
! 0Þ

<eVV��
si ðk#"kKðUÞ

! 0Þ<eVV��
si ðk#"kL

! 0Þ< 0; ð14Þ

as far as C11 � C12 � 2C44 < 0 and C12 <C11.

Based on the analysis of diffuse scattering data obtained for

disordered (para)magnetic f.c.c. Ni–Fe alloys (Bokoch &

Tatarenko, 2008, 2010), we showed that the concentration

dependence of ‘paramagnetic’ ‘mixing’ energy Fourier

components for a few related quasi-wavevectors in the 1st BZ

can be fitted as ewwprmðkÞ ffi K0ðkÞ þ K1ðkÞcþ K2ðkÞc
2, where

KmðkÞ (m ¼ 0; 1; 2) are adjustable coefficients.1 Using these
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1 Supplementary material for this article is available from the IUCr electronic
archives (Reference: IB5019). Services for accessing this material are
described at the back of the journal.



data for the f.c.c. Ni3Fe permalloy composition, we calculateewwprmð0Þ ffi þ0:405 eVandewwprmðkXÞ ffi �0:302 eV. [By applying

the conventional Fourier transform, we can roughly estimate

‘mixing’ energies within the two nearest-neighbour coordina-

tion shells with radii r1 and r2 ¼ a0 as follows: wprmðr1Þ ffi

þ44:14 meV and wprmðr2Þ ffi �20:83 meV, respectively.]

Taking into account both the definition e’’chemðkÞ ’ ewwprmðkÞ

� eVV��
si ðkÞ [equation (3)] and the short-range and isotropic

character of ‘electrochemical’ ‘mixing’ energies resulting in

relations e’’chemðkÞjk!0 � e’’chemð0Þ> 0 in a reciprocal-space

representation, we reveal the following reciprocal-space

symmetry regularities for total ‘paramagnetic’ mixing energies

in the form

ewwprmð0Þ<ewwprmðk#"kX
! 0Þ<ewwprmðk#"kW

! 0Þ

<ewwprmðk#"kKðUÞ
! 0Þ<ewwprmðk#"kL

! 0Þ> 0: ð15Þ

The ‘mixing’ energy Fourier components [equation (3)] near

and at the k�-point calculated for the ferromagnetic state

(FMS) f.c.c. Ni3Fe permalloy domain at 800 K are illustrated

in Fig. 2. In Fig. 2, one can see an agreement of the estimated

and predicted [equations (14) and (15)] ‘mixing’ energy

symmetry regularities.

Using the ‘mixing’ energies represented within the reci-

procal space in Fig. 2 and applying the KCM formula [equa-

tion (1)], we can calculate the equilibrium SRO diffuse

scattering intensity distribution near and at the k�-point. As

shown in Fig. 3, in the case of a pure ‘electrochemical’ inter-

action of atoms in an alloy, the resulting SRO intensity level

hypersurface, IchemðkÞ, is an analytic (and isotropic) function of

(small) k, i.e. IchemðkÞjk!0 � Ichemð0Þ> 0. However, for

(para)magnetic permalloys with the ‘strain-induced’ or ‘strain-

induced’ + magnetic interactions of substitutional atoms, the

SRO intensities IprmðkÞ and ItotðkÞ

demonstrate both the analytic (i.e.

azimuthal) and nonanalytic (i.e. first-

kind-jump-discontinuous ‘radial’) parts.

So, we write the ISROðkÞ regularities as

ISROð0Þ> ISROðk#"kX
! 0Þ

> ISROðk#"kW
! 0Þ> ISROðk#"kKðUÞ

! 0Þ

> ISROðk#"kL
! 0Þ> 0; ð16Þ

which are valid for both cases of ISROðkÞ:

IprmðkÞ and ItotðkÞ, but only with the

distinction that jIprmðkÞj> jItotðkÞj for

small k! 0 and k�. This means that, in

experiments done for the PMS domain,

the azimuthal dependence of ISROðkÞ

will be more pronounced as compared

with that for the FMS domain (see Fig.

3). In addition, our results on an analytic

part of the SRO intensity, i.e. azimuthal

dependence [for both IprmðkÞ and ItotðkÞ

in Fig. 3], are in good qualitative

agreement with the experimental dif-

fuse scattering data reported for f.c.c.

Ni–Fe Invar compositions (Ono et al.,

1995; Tsunoda et al., 2008).

In conclusion, we have recalculated

the total ‘mixing’ energies and the SRO

intensities in a reciprocal-space repre-

sentation shown in Figs. 2 and 3 as

functions of both the quasi-wavevector

magnitude jkj ¼ k along the high-

symmetry directions within the 1st BZ

and the temperature for the PMS and

FMS domains (Fig. 4). From Figs. 4(a)

and 4(b), one can see the rigorous

compliances of the symmetry regula-

rities {inequalities [equations (15) and

(16)]}. Both functions, ewwtotðkÞ and

ItotðkÞ, are analytic for each k! 0 and

nonanalytic at the k�-point precisely
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Figure 2
The various ‘mixing’ energy Fourier component contributions near the ‘fundamental’ �(000)-point
in the three k-space high-symmetry planes: (001), (011) and (111), calculated for the FMS f.c.c.
Ni3Fe permalloy domain at 800 K (reciprocal-space level-hypersurfaces map).



[lim k!0ewwtotðkÞ 6¼ ewwtotð0Þ, lim k!0ItotðkÞ

6¼ Itotð0Þ]. Moreover, it is worth noting

that, in contrast to the conventional

Huang diffuse scattering (Huang, 1947)

with intensities IHuangðkÞ / k�2 for small

k! 0, the equilibrium SRO intensities

for PMS and FMS domains behave as

ISROðkÞ / k2 (Fig. 4b). This means that,

in diffraction experiments for concen-

trated solid solutions of strongly inter-

acting impurities (inclined to order),

ISROðkÞ is dominant, while for dilute

solutions of ‘elastically’ interacting

point defects, only IHuangðkÞ still plays a

crucial role. As revealed in addition,ewwtotðk;TÞ and Itotðk;TÞ as functions of

T change their slopes at the PMS-to-

FMS transition (Figs. 4c and 4d). This

temperature-controlled effect is caused

by initiation of the magnetic LRO state

of both Ni and Fe subsystems,

0 	 j�Ni;FeðTÞj 	 1 at T 	 TC [equa-

tions (10a), (10b)], that leads immedi-

ately to the pronounced T-dependence

of the total ‘mixing’ energies [see

equation (3) and Fig. 4c]. At T>TC (i.e.

for the PMS domain) ewwprmðk;TÞ

’ const (see Fig. 4c) and Iprmðk;TÞ

behaves in accordance with the classical

KCM theory.

4. Summary

In this work, the diffuse scattering

intensities caused by the short-range

atomic order (taking into account the

long-range magnetic order) near the

Bragg reflection in a (para)magnetic

bulk f.c.c. Ni3Fe-type permalloy are

investigated in detail. The analytic (i.e.

azimuthal) and nonanalytic behaviours

(symmetry regularities) of the SRO

intensities and the different ‘mixing’

energy Fourier component contribu-

tions are revealed and analysed.

Here, we have not considered

explicitly an interplay between the long-

range ‘strain-induced’ effects and the

magnetic ordering (i.e. local magneto-

volume phenomena); however, we argue

that the reported results are sufficient

for providing additional basics on the

kinematic diffuse scattering of radia-

tions near the Bragg reflection in

equilibrium (para)magnetic bulk alloys.

Moreover, it is worth noting that

the above-presented results are based
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Figure 3
The various SRO intensity contributions near the ‘fundamental’ �(000)-point in the three
reciprocal-space high-symmetry planes: (001), (011) and (111), calculated for the FMS f.c.c. Ni3Fe
permalloy domain at 800 K with use of equation (2) and data shown in Fig. 2 (level-hypersurfaces
map).

Figure 4ewwtotðkÞ (a) and ItotðkÞ (b) for some k! 0 and k� (Fig. 1b) as calculated for the FMS f.c.c. Ni3Fe
permalloy domain at 800 K. T-dependences ofewwtotðk;TÞ (c) and Itotðk;TÞ (d) for the PMS and FMS
domains [according to equation (11), TCðc ¼ 0:25Þ ffi 868 K; T

exp
C ’ 870 K].



solely on the local magnetic moments model, which is valid

within the lattice-gas approximation only and cannot be

applied to the accounting of the ‘itinerant’ magnetism of

quasi-free electrons. Nonetheless, a reader can find both

approaches and their comparative analysis based on a reci-

procal-space symmetry consideration in critical reviews

(Tatarenko et al., 2008; Bokoch & Tatarenko, 2010); the

comprehensive list of references to the most salient literature

on this matter can be found elsewhere (Aharoni, 2000;

Tatarenko et al., 2008; Bokoch & Tatarenko, 2010; Vernyhora

et al., 2010).

5. Related literature

The magnetic ‘mixing’ energy in f.c.c. Ni–Fe alloys is discussed

in Tatarenko & Radchenko (2003), Bokoch & Tatarenko

(2008, 2010), Tatarenko et al. (2008), Men’shikov & Yurchikov

(1972), Lawrence & Rossiter (1986), Hatherly et al. (1964),

Maeda et al. (1973), Dubé et al. (1995), Dang et al. (1995),

Taylor & Gyorffy (1992) and Taylor et al. (1991). ‘Strain-

induced’ interatomic interaction energies of dissolved atoms

in solid solutions are discussed in Tatarenko & Nadutov

(2004), Bugaev & Tatarenko (1989), Beiden & Vaks (1992),

Birgeneau et al. (1964), Bokoch & Tatarenko (2010) and

Tatarenko & Tsinman (1992). The ‘paramagnetic’ ‘mixing’

energy in f.c.c. Ni–Fe alloys is discussed in Bokoch & Tatar-

enko (2010); Lefebvre et al. (1980, 1981); Bley et al. (1988); Ice

et al. (1992, 1998); Jiang et al. (1995, 1996), Ice, Sparks et al.

(1996); Ice, Painter et al. (1996); Ice & Sparks (1999);

Robertson et al. (1999) and Cenedese et al. (1984). For a phase

diagram for f.c.c. Ni–Fe alloys, see Swartzendruber et al. (1991),

for the lattice dynamics of f.c.c. lattices in general see Kush-

waha & Kushwaha (1978), and for the latttice spacing of f.c.c.

Ni as a function of Fe concentration, see Pearson (1958, 1968).

The authors thank Professor B. Schönfeld (ETH, Switzer-

land), Dr V. M. Kaganer (PDI, Germany) and Dr G. E. Ice

(ORNL, USA) for stimulating discussions of the kinematically

approximated interaction of radiations with non-ideal solids.
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